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Introduction
• The COVID-19 pandemic had devastating effects on

the well-being of the global population.

• Computer-assisted diagnosis (CAD) is playing a key

role in detecting COVID-19 using Chest radiography as

an effective screening method [1].

• A big challenge in training CAD models to diagnose

COVID-19 is limited training data, especially at the

onset of the pandemic when data is scarce but rapid

development of diagnosis tools is critical.

• The use of low-shot imprinted weights approach in CAD

models improves their classification performance on

COVID-19 X-ray images by leveraging the abundance

of samples from known illnesses like pneumonia to

boost novel class performance with low-shots.

Methods

CAD Model

• The model consists of a 256 neuron fully connected

embedding layer, and a softmax classification layer.

• The embedding extractor uses ResNet-50 pre-trained

on the ImageNet data set.

• For comparison, a 3-class joint model is built as a

baseline model. This model shares the number of

neurons in the fully connected layer and the softmax

classification layer but does not use the embedded

weights approach.

• Input images are resized to 256x256, cropped to

224x224 and normalized.

Implementation Details

COVIDx-CXR Database

• Normal and pneumonia categories are used to train a

base classifier.

• COVID-19 images are used for inference to the base

classifier to generate averaged embedding vectors

used in the imprinting step.

Conclusion
• The effectiveness of the imprinted weights approach for

COVIDx dataset was evaluated with 10-fold stratified cross

validation, focusing on the metrics of the COVID-19 class.

• Sensitivity of COVID-19 at low shots were significantly

better with the imprinted weights architecture compared to 3

classes. This advantage diminishes as the number of shots

increased. The imprinted weights approach also provided

smoother and faster convergence during training.

• The imprinted weights architecture can be used to rapidly

develop diagnosis models at the onset of a pandemic,

performing better than its traditional CAD counterparts

when data is scarce.
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Results
To evaluate the generalization performance of the models, 10-fold stratified cross validations are performed.

Figure 1. The train/test split of COVIDx-CXR database [2].

Figure 5. (a) Class sensitivities for Imprinted Weights and 3-class joint models. (b) Class positive predictive value (PPV)

for Imprinted Weights and 3-class joint models. Both (a) and (b) have their standard deviation across the 10 folds as the

error bars.

Figure 4. (a) COVID-19 sensitivities for Imprinted Weights and 3-class joint models as they change with increasing

number of COVID-19 samples used. (b) Overall (averaged between all 3 classes) sensitivity comparison of the two

models. Both (a) and (b) have their standard deviation across the folds as the error bars.

Parameter Setting

Learning Rate 10-3

Learning Rate Reduction

Method

Exponential Step Decay

with 4 Steps, and Decay

Factor of 0.94.

Optimizer SGD with Momentum of 0.9 

and 10-4 Weight Decay.

Number of Epochs 40

Imprinting Architecture

Figure 2. Low-shot learning with imprinted weights [3]

Figure 3. Data pipeline used for training/testing models


